

PLATO-PASSBY Radar-less Passby Noise Analysis with Doppler-shift Corrected Order-Track Analysis

Get in touch: Anthony Best Dynamics Ltd

Middleton Drive Bradford on Avon Wiltshire

BA15 1GB England

Email: info@abdynamics.com +44 (0)1225 860 200

Document: PS-435 Issue: 1 Date: 6th September 2018

Pass-by Noise Analysis with Order-Track Diagnostics

- Standard drive-by result (maximum dBA value to ISO 362) gives no clues for:
 - main noise sources
 - **position in test zone** associated with maximum noise
- Source identification via narrow-band order-tracking is required
- Factors influencing successful noise measurement include:
 - Track reflectively
 - Moving sources
 - Changing frequencies (due to vehicle acceleration and the Doppler-effect)
- Successful order-track (narrow-band) analysis requires **Doppler-shift correction** which requires:
 - Knowledge of instantaneous vehicle speed at every position throughout the test zone

- Vehicle speed traditionally measured using radar, ABD solution is radar-less
- ABD solution provides:
 - **simple** vehicle and track set-up (no radar required)
 - overall noise level (dBA) throughout test
 - Doppler-shift corrected narrow-band order analysis
 - results in standard PLATO format for engineering diagnostics

- **RF-transmitter** (in-vehicle):
 - relays speed pulse train ("tacho") signal to RF-receiver (at track-side)
 - "gated" ON/OFF by optical sensor pointing at reflective strips secured to test track at defined positions (see next slide)
- Data acquisition system (PLATO base-station) samples:
 - tacho signal (from telemetry system)
 - microphone channels
 - typical sample rate 64KHz
 (sufficient for 20KHz bandwidth frequency analysis)

Test Track Setup

- Reflective strips:
 - Secured on track at 4-positions (A-A, B-B, D-D & E-E)
 - Tacho (speed) signal transmitted during vehicle run-up to position A-A
 - Reflective strip at A-A turns tacho signal telemetry OFF
 - Reflective strip at B-B turns tacho signal telemetry ON
 - Reflective strip at **D-D** turns tacho signal telemetry **OFF**
 - Reflective strip at E-E turns tacho signal telemetry ON
- Radar (for vehicle position):
 - **NOT** required

- Tacho data has two (2) gaps
- Data between gaps corresponds exactly to (20m + length of vehicle)
- Tacho data allows reference shaft speed to be plotted against time
- Constant factor relates reference shaft speed to vehicle speed
- Integral (area under) vehicle speed vs. time graph equals 20m plus length of vehicle
- X-axis of vehicle speed vs. distance graph extends to 20m plus length of vehicle
- Knowledge of vehicle speed at all positions throughout the test zone allows Doppler-shift corrections to be made

Dynamics

Test Track Geometry

- a) Use the pulse/revolution value of the tacho record to evaluate the time frame corresponding to N revolutions
- b) Generate a digital anti-alias filter whose corner frequency is appropriate for the average shaft speed in that time frame
- c) Digitally anti-alias filter the 64kHz noise records for that time frame
- d) Use <u>individual tooth timings</u> to re-sample the 64kHz noise records for that time zone to create shaft speed synchronized samples eg 1024 points over 4 revolutions
- e) If Doppler-shift correction is selected, the re-sampling rate is adjusted according to the following equation using vehicle velocity and position information at <u>each re-sample point</u>

Measured Frequency (Hz) =
$$\left[1 + \frac{V_{vehicle} \cos \theta}{C} \right] * True Frequency$$

where:

C= speed of sound (m/s) $V_{vehicle}$, and θ as defined in previous slide

- f) Calculate the FFT (order spectrum)
- g) Repeat (a) to (f) for the next N revolutions in the test zone until the data is exhausted

Example ("3D") Data

Clear indication of noise order-tracks

"Straight" order-tracks indicate that Doppler-shifted frequencies are properly corrected.

Example Overall Level & Order-Tracks

Source-specific noise ordertracks extracted using regular PLATO NVH system software

- · calculates vehicle position and speed from a contiguous tacho pulse record
- no requirement for radar system on track
- cost-effective and easy to set-up
- provides legislation-driven (overall level) and development engineering results
- provides the engineering data at high levels of resolution throughout the test zone, with extremely accurate Doppler-shift correction.

Useful Links

Get in touch

AB Dynamics
Middleton Drive
Bradford on Avon
Wiltshire
BA15 1GB England

Web: abdynamics.com

Email: info@abdynamics.com Tel: +44 (0)1225 860 200

Follow us

https://twitter.com/ABDynamics

https://www.linkedin.com/company/ab-dynamics

https://www.youtube.com/user/abdynamics

https://www.facebook.com/ABDynamicsUK